

High Throughput Combinatorial Chemistry Development of Complex Hydrides

Darshan Kundaliya, Jonathan Melman, Xiongfei Shen, Hyung-Chul Lee, Tom Enck and C. Bajorek

Internatix Corporation

In Association with the DOE/Metal Hydride Center of Excellence

Project ID #STP17

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Project Timeline

- > Start date: March 2005
- > End date: February 2008
- ➤ 100% Percent complete

Budget

- Total project funding
 - ✓ DOE share: \$870K
 - ✓ Contractor share: \$218K
- Funding received in FY07: \$270K

Partners

- > HRL
- Sandia National Lab

Barriers

- Slow kinetic reaction (E)
- Thermodynamic stability (J)
- Low reversible storage (P)
- In-situ thin film characterization (Q)

Objective

Overall

- Identify and synthesize novel metal hydride systems using high-throughput combinatorial technique
- ➤ Identify catalysts to achieve fast reaction kinetics for metal hydride systems and thus support DOE's 2010 targets for start time (4 s), flow rate (0.02 (g H₂/s)/kW) and refill time (3 min)

2006

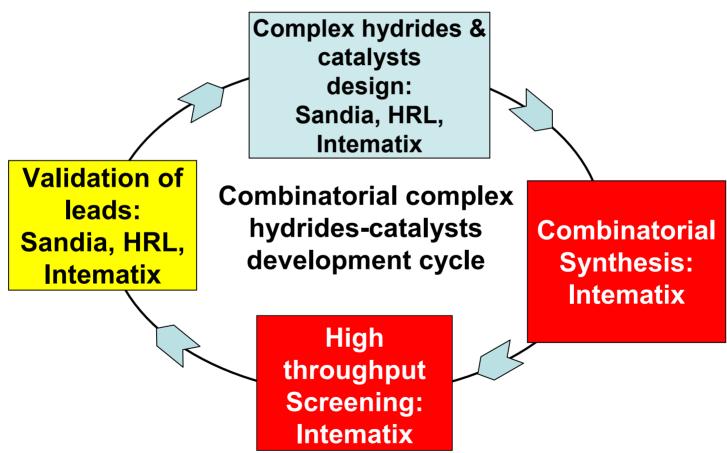
- Validate combinatorial nano-synthesis systems for catalyst discovery
- Screen and identify better catalysts for MgH₂ + Si system
- Screen and identify better catalysts for complex LiBH₄ + MgH₂ dehydrogenation and hydrogenation

2007

- Synthesize and characterize novel complex hydride materials in thin films format
- ➤ Continue catalyst screening on LiBH₄ + MgH₂ system based on leads obtained in 2006
- Support other MHCoE partners for thin film deposition

2008

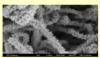
Validate Combinatorial Optical Screening technique for complex hydrides such as NaAlH₄ and LiBH₄


Accomplishments

- Validation of two combinatorial synthesis techniques
- Validation of three high throughput screening techniques
- Validation of Optical Screening for complex and simple hydrides
- Catalyst screened: ~100 metals and alloys
- Found better catalyst for MgH₂ + Si dehydrogenation
 - □ Did not identify any effective rehydrogenation catalyst
 - System down-selected due to lack of rehydrogenation at IMX or other Center Partners
- A few catalyst leads found for LiH+MgB₂ system hydrogenation, however, this entry point into the system is not very promising
- Catalyst screening in progress for LiBH₄ + MgH₂ dehydrogenation
- Proven successful synthesis of thin film materials on both known and novel complex hydride materials [e.g. LiBH₄ and Ca(BH₄)₂]
- Patents filed: 2
- Internatix accomplished validation of its tools for high-throughput
 combinatorial catalyst screening ahead of schedule

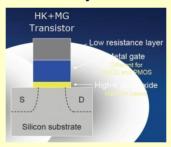
The Partner Approach

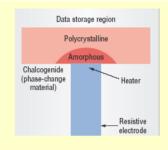
Methodology used for metal hydride synthesis and combinatorial catalyst screening

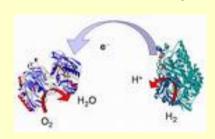


Intematix's Joint Development Program

Thin Film Solar Cell & Down Conversion Technology


Fuel Cells, H₂ Generation and Storage


Security Phosphor Materials &System


Li Battery Materials

High-k Metal Gate

Non-Volatile Memory

Catalysts for Biofuels

LED, PDP, CCFL Phosphors

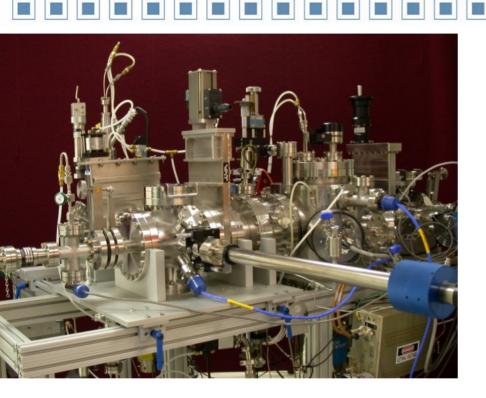
Catalysts Screening for Metal Hydride

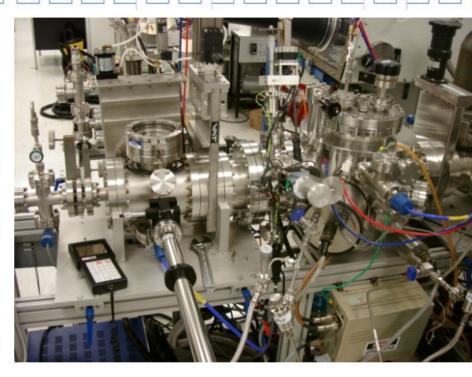
Methodology

- ➤ Combinatorial thin film deposition of catalyst library and in-situ annealing using lon Beam Sputtering System (primary tool)
- ➤ Combinatorial growth of metal nanoparticles using Laser Pyrolysis
- Laser Annealing of metal library in hydrogen pressure cell (Near Future)

Techniques

- Real-Time monitoring of optical variations with temperature under different environments
- ➤ Optical reflectivity determination (Only for thin film samples)
- ➤ Ex-situ scanning X-ray diffraction


Confirmation


MHCoE partners collaboration (HRL, SNL)

Ion Beam Sputtering: A Combinatorial Approach

Advantages

Capabilities

Ultra-fast combinatorial materials synthesis

Combinatorial synthesis of metal hydrides and/or

catalysts thin films

Status

Validated for metal hydride and catalyst synthesis

Experimental Details – Catalyst Screening

Catalysts deposition by CIBS on metal hydride on substrates

Transfer to the reactor with optical window

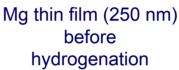
Variations in optical properties recorded versus temperature

For hydrogenation, catalyst library was first screened under Ar and then H₂

Results determined by image processing; compared to any existing data*

Confirm the formation of product by XRD NaH + AI / NaAIH₄ Mg₂Si / MgH₂ +Si

Methodology for catalyst screening validated by 'rediscovery' of known catalyst as well as discovery of a new, better catalyst.


High Throughput Screening Tools-1

Optical Screening

- 1) Using High Pressure Optical Chamber
- 2) Max. Pressure: 600 psi
- 3) Max. Temperature: 350 °C
- 4) Max. Sample Size: 3 x 3 cm

MgH₂ thin film after hydrogenation

Methodology:

At constant pressure:

Change in optical properties versus temperature

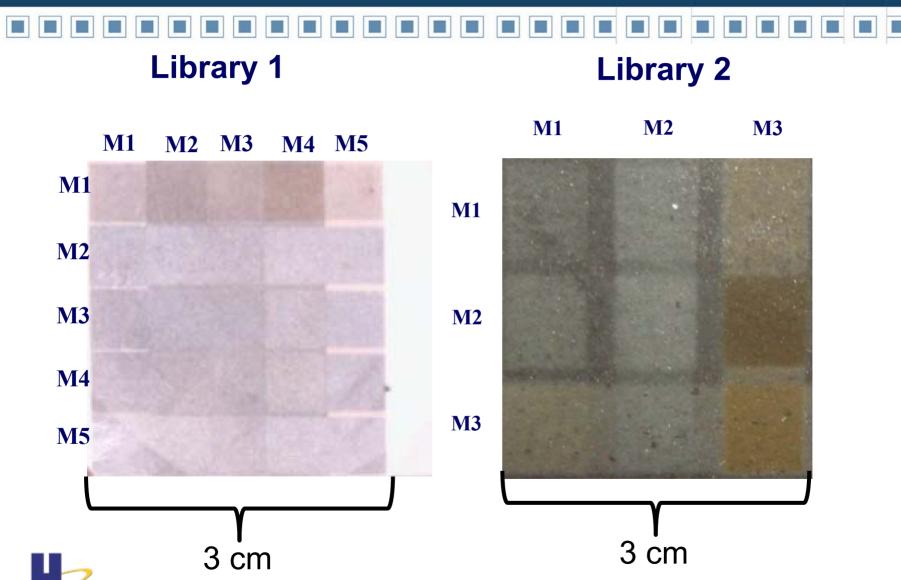
At constant temperature:

Observe the of change in optical properties versus pressure

Conclusion:

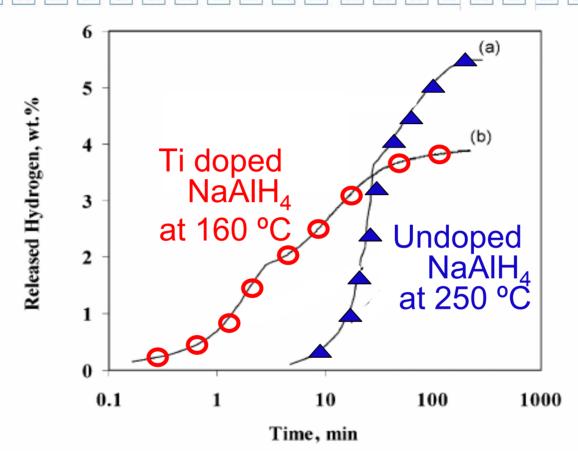
A change in color, as indicated by image processing, at a particular catalyst, indicates that a reaction may have taken place (lead generated for further catalysis study)

Change in optical property is a combination of change in reflectivity and the respective transmission stemming from change in underlying band structure.

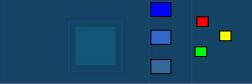


Griessen & coworkers, Scripta Materialia 56, 853 (2007)

Example Libraries


DOE Hydrogen Program

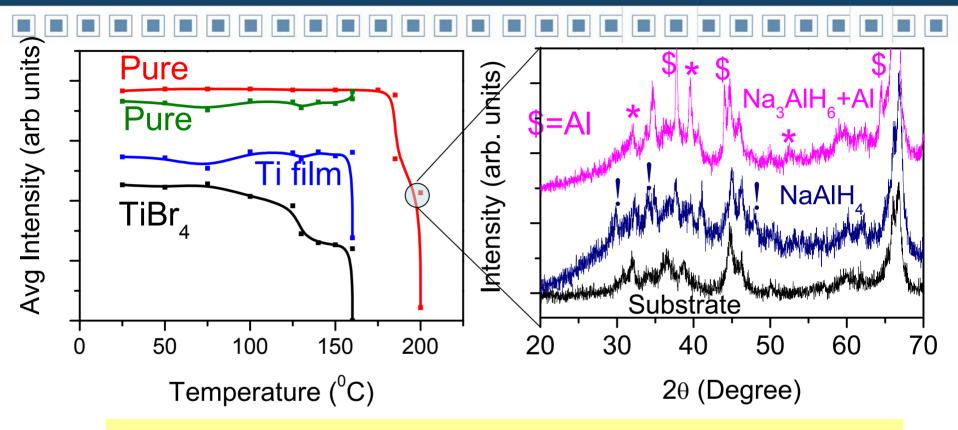
NaAlH₄ Literature



Ti known to catalyze H₂ release from NaAlH₄

Jensen & coworkers, J. Phys. Chem. B 107, 10176 (2003)

Validation of Method with NaAlH₄

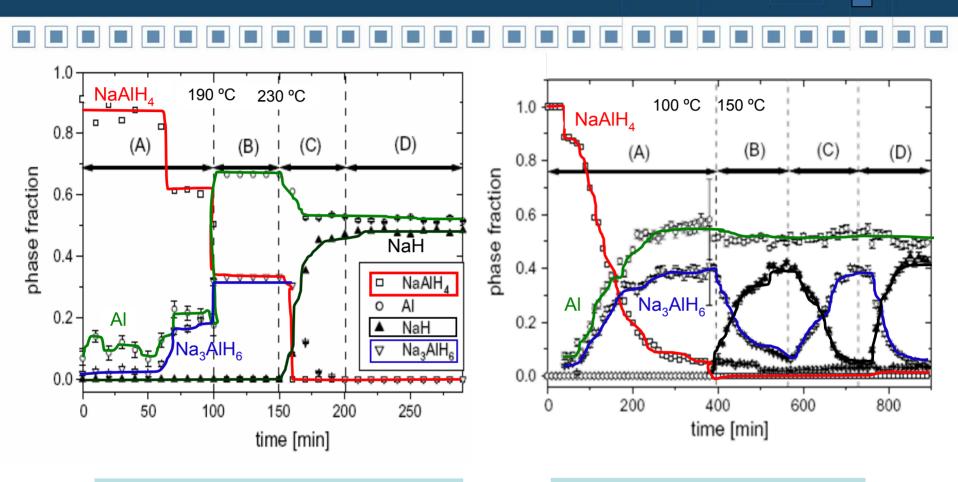


NaAlH₄ deposited on the substrate as a slurry in hexane or anhydrous toluene

Internatix Results: Image Processing and XRD

Ti identified as a catalyst for the system

XRD confirms phase change and hydrogen release:

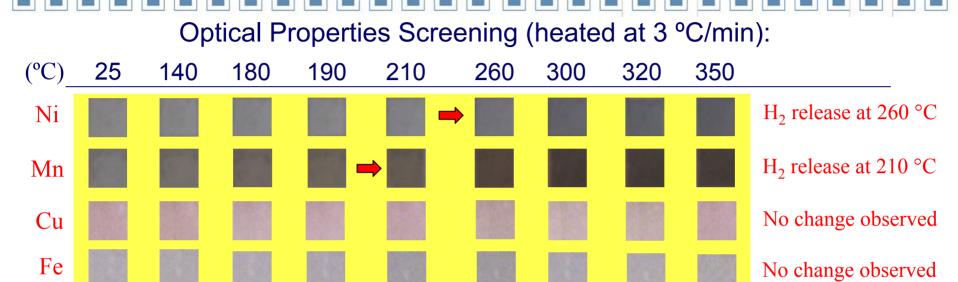

3NaAlH₄ → Na₃AlH₆ + 2Al + 3H₂

Rehydrogenation attempted but unsuccessful as 500 psi H₂ is below the 1500 psi where facile reaction would be expected 14

NaAlH₄ Literature Matches Experimental Results

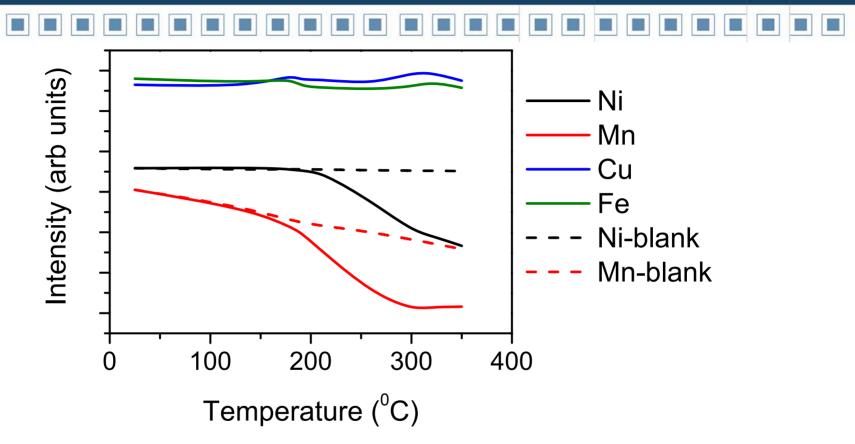
Pure NaAlH₄ transforms to Na₃AlH₆ ~190 °C

Ti catalyzed NaAlH₄ transforms ~150 °C


Singh et al., Acta Materialia **55**, 5549 (2007)

Validation

- Methodology validated on NaAlH₄ system; results both with and without Ti match expected behavior
- Observation of catalysis in "bulk-like" sample
- Observation of catalysis by thin film deposited catalyst sample on a complex hydride
- XRD can be used as direct confirmation of product formation
- These results enable us to trust both the thin film catalyst deposition approach and the sample preparation methodology

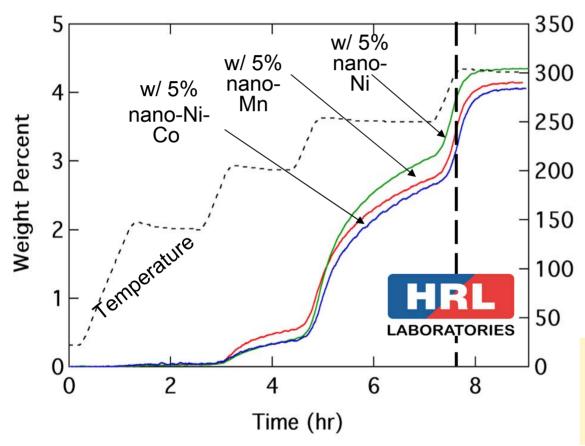


- □ Catalytic effect observed with thin film metal deposited on covalent metal hydride
- Ni known by HRL, Mn previously unknown
- Non-reaction with Cu and Fe thin films confirms catalytic versus morphological nature of thin film Mn and Ni
- □ We have confirmed that there is no change in the optical properties of pure material under the similar conditions (1 bar Ar, time= 2 hrs, max T = 350 °C)

Catalysts screened: Ni, Mn, Cr, Fe, Ti, Nb, Pt, V, Cu, and

Image Processing of MgH₂ + Si optical screening

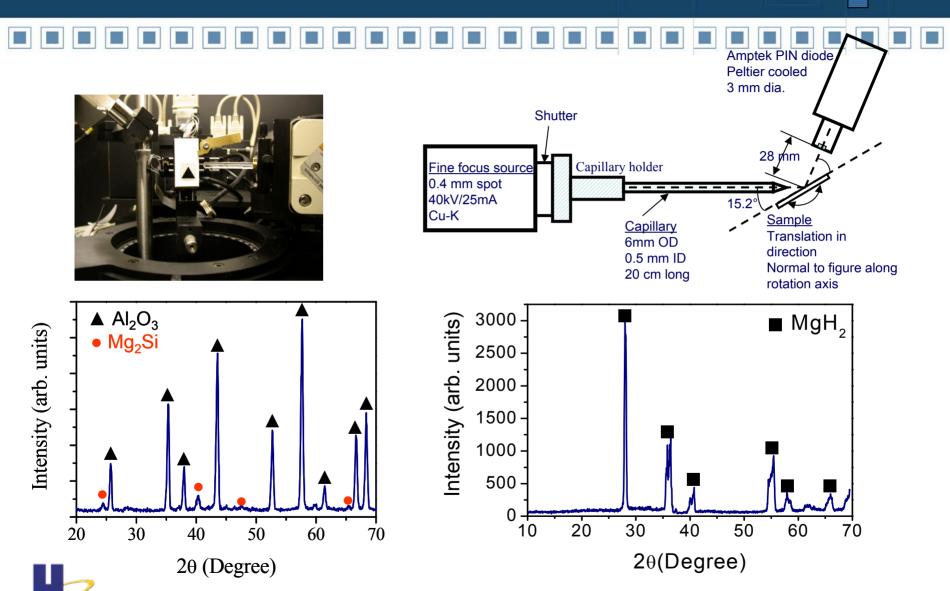
- Blanks show effect of heating catalyst in presence of argon
- No difference between blank and experiment for Ni or Mn
- Image processing quantitatively shows transition temperatures, which are key to interpreting results


DOE Hydrogen Program

18

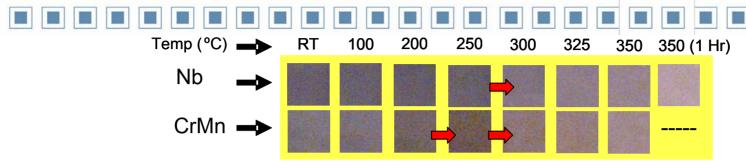
Hydrogen Desorption Catalyst Confirmation from Center Partner

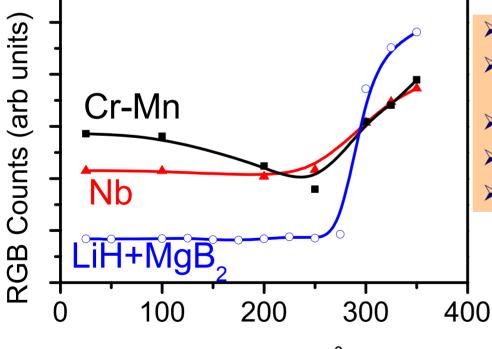
MgH₂/Si + Catalyst



- ➤ A similar approach was used by HRL: heating at 2 °C/min
- Pure MgH₂ + Si takes
 7.5 hr for onset of decomposition (shown by vertical dashed line)

Nano-Mn, Ni and Ni-Co give similar enhancements for dehydrogenation




Micro-beam scanning XRD results

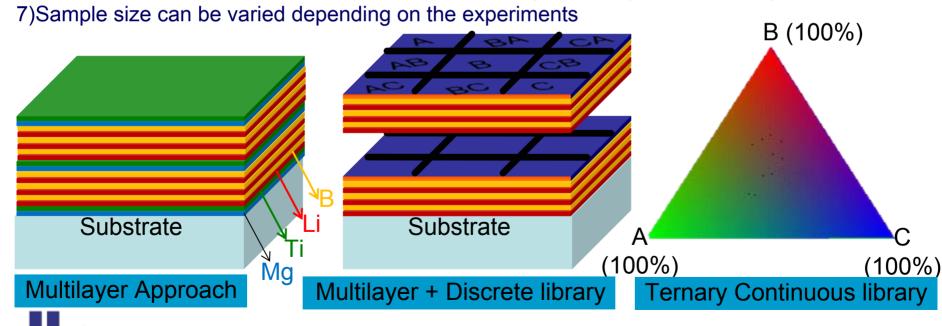
Limitation: Not configured for highly air sensitive materials

Hydrogenation – Catalyst Screening for LiH + MgB₂

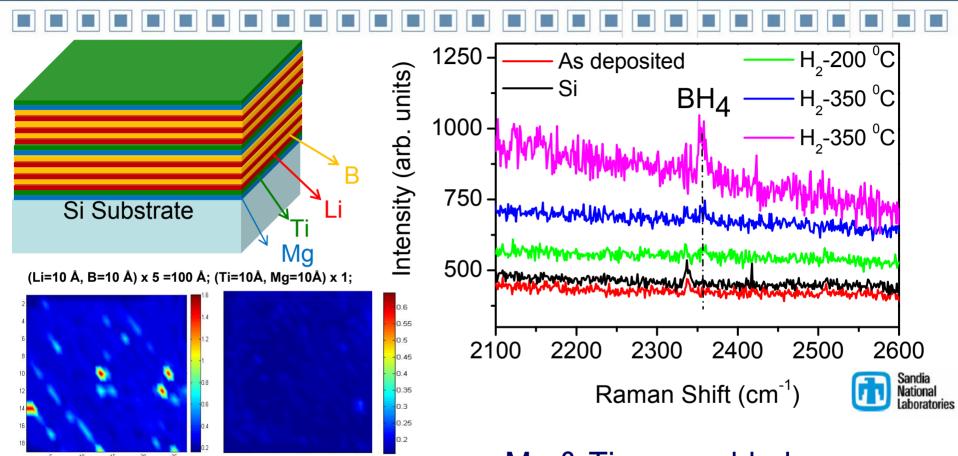
- ➤ Evidence for Nb metal, CrMn alloy catalysis
- ➤ Screened ~50 catalysts combinations of Fe, Ni, Nb, Pt, Ru, Cr, Mn, Mg, V
- ➤ More careful analysis is required
- ➤ Most promising results shown here
- >Further validation necessary

Also, screened 25 catalyst for Dehydrogenation of LiBH₄ + MgH₂

DOE Hydrogen Program


Thin film systems

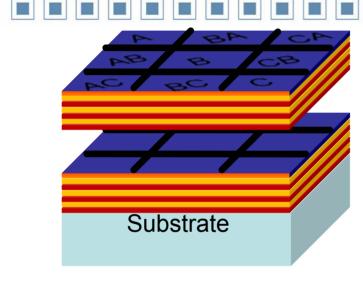
Combinatorial Thin Film Design Approach

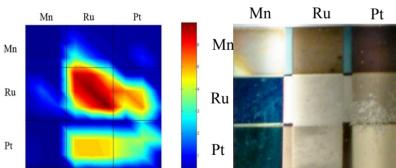

Rationale:

- 1)Addresses/solves non-uniformity of powdered (ball-milled) sample
- 2)Opportunity to explore novel <u>nano-material</u> system in a "controlled" fashion.
- 3)Catalysts can be sandwiched between the complex hydride layers increasing effective loading
- 4)More accurate data accumulation using automated optical reflectivity setup for hydrogenated and dehydrogenated samples.
- 5)Role of morphology, microstructure and stress on hydrogen storage can be studied effectively
- 6)Sensitive elements, such as Li, can be deposited very efficiently and effectively.

Li-B-Mg-Ti Thin Film, 350 °C and 500 psi H₂

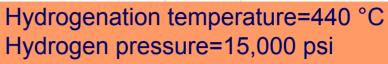
False color reflectivity mapping indicates hydrogen uptake (darkening from right to left); confirmed by Raman

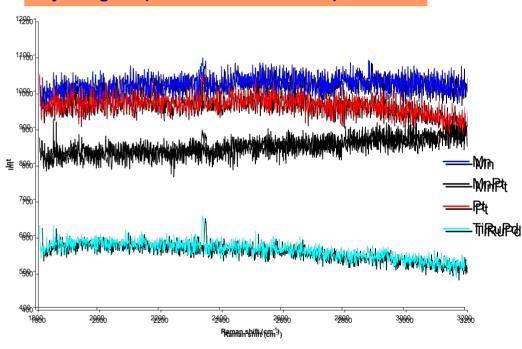



Mg & Ti were added as catalysts based on LiBH₄ bulk systems in the literature

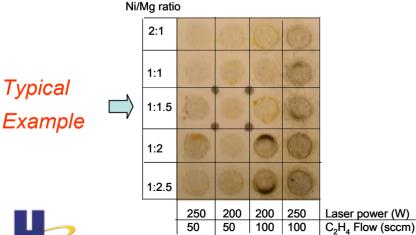
Vajo et al., J. Phys. Chem. B **109**, 3719 (2005) Yu et al., Chem. Comm. 3906 (2006) Au et al., J. Phys. Chem. B **110**, 26482 (2006)

Ca-B Mixture Thin Film With Catalyst Library

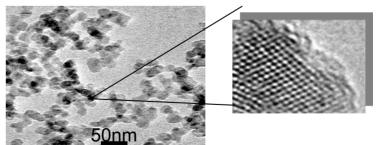




Optical reflectivity and an image of Ca, B mixture with discrete catalyst libraries.



Indication of B-H bond formation, but not necessarily BH_4^- , possibly a higher order $B_xH_y^{n-}$, based on the Raman spectra. Such a compound is likely an intermediate in the formation of BH_4^- from elemental B and H_2 .


Complementary Synthesis Technique – Combinatorial Nano-particle (CNP) System

- □ Synthesis of nanoparticles of metals, oxides, hydrides, nitrides, carbides, sulfides, etc.
- ☐ Reproducible high crystalline quality nanoparticles with narrow size distribution (< ±30%)
 </p>
- □ Synthesis of combinatorial nano-particle libraries with controllable parameters:
 - particle size
 - material composition
 - > synthesis conditions
- System has been validated for bimetal alloy libraries

26

Summary

Identify catalysts which improve the kinetics and selectivity for desired metal hydride systems to enable an on-board hydrogen storage system which meets DOE 2010 targets.

Approach:

Combinatorial nano-catalyst synthesis and high throughput screening to speed up catalyst discovery.

Technical Accomplishment and Results:

- (1) Improvement in design, setup and validation of combinatorial nano-catalyst synthesis and high throughput catalyst screening processes.
- (2) Validation of Optical Screening for complex and simple hydrides
- (3) Proven successful synthesis of thin film materials on both known and novel complex hydride materials [e.g. LiBH₄ and Ca(BH₄)₂]
- (4) Ni and Mn were found to be the most effective catalyst for MgH₂ + Si system for dehydrogenation. But, NO Reversibility. So, NO-GO system.
- (5) Identified a few alloy leads which appear to improve kinetics of LiH + MgB₂ system. But more catalyst screening is necessary for further improvement.

Proposed Future Research:

Project Complete